3.189 \(\int \sin (a+b \sqrt {c+d x}) \, dx\)

Optimal. Leaf size=54 \[ \frac {2 \sin \left (a+b \sqrt {c+d x}\right )}{b^2 d}-\frac {2 \sqrt {c+d x} \cos \left (a+b \sqrt {c+d x}\right )}{b d} \]

[Out]

2*sin(a+b*(d*x+c)^(1/2))/b^2/d-2*cos(a+b*(d*x+c)^(1/2))*(d*x+c)^(1/2)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 54, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {3361, 3296, 2637} \[ \frac {2 \sin \left (a+b \sqrt {c+d x}\right )}{b^2 d}-\frac {2 \sqrt {c+d x} \cos \left (a+b \sqrt {c+d x}\right )}{b d} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b*Sqrt[c + d*x]],x]

[Out]

(-2*Sqrt[c + d*x]*Cos[a + b*Sqrt[c + d*x]])/(b*d) + (2*Sin[a + b*Sqrt[c + d*x]])/(b^2*d)

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3296

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> -Simp[((c + d*x)^m*Cos[e + f*x])/f, x] +
Dist[(d*m)/f, Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]

Rule 3361

Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Dist[1/(n*f), Subst[Int[x
^(1/n - 1)*(a + b*Sin[c + d*x])^p, x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && In
tegerQ[1/n]

Rubi steps

\begin {align*} \int \sin \left (a+b \sqrt {c+d x}\right ) \, dx &=\frac {2 \operatorname {Subst}\left (\int x \sin (a+b x) \, dx,x,\sqrt {c+d x}\right )}{d}\\ &=-\frac {2 \sqrt {c+d x} \cos \left (a+b \sqrt {c+d x}\right )}{b d}+\frac {2 \operatorname {Subst}\left (\int \cos (a+b x) \, dx,x,\sqrt {c+d x}\right )}{b d}\\ &=-\frac {2 \sqrt {c+d x} \cos \left (a+b \sqrt {c+d x}\right )}{b d}+\frac {2 \sin \left (a+b \sqrt {c+d x}\right )}{b^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.08, size = 50, normalized size = 0.93 \[ \frac {2 \sin \left (a+b \sqrt {c+d x}\right )-2 b \sqrt {c+d x} \cos \left (a+b \sqrt {c+d x}\right )}{b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b*Sqrt[c + d*x]],x]

[Out]

(-2*b*Sqrt[c + d*x]*Cos[a + b*Sqrt[c + d*x]] + 2*Sin[a + b*Sqrt[c + d*x]])/(b^2*d)

________________________________________________________________________________________

fricas [A]  time = 0.60, size = 44, normalized size = 0.81 \[ -\frac {2 \, {\left (\sqrt {d x + c} b \cos \left (\sqrt {d x + c} b + a\right ) - \sin \left (\sqrt {d x + c} b + a\right )\right )}}{b^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*(d*x+c)^(1/2)),x, algorithm="fricas")

[Out]

-2*(sqrt(d*x + c)*b*cos(sqrt(d*x + c)*b + a) - sin(sqrt(d*x + c)*b + a))/(b^2*d)

________________________________________________________________________________________

giac [A]  time = 0.44, size = 44, normalized size = 0.81 \[ -\frac {2 \, {\left (\sqrt {d x + c} b \cos \left (\sqrt {d x + c} b + a\right ) - \sin \left (\sqrt {d x + c} b + a\right )\right )}}{b^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*(d*x+c)^(1/2)),x, algorithm="giac")

[Out]

-2*(sqrt(d*x + c)*b*cos(sqrt(d*x + c)*b + a) - sin(sqrt(d*x + c)*b + a))/(b^2*d)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 61, normalized size = 1.13 \[ \frac {2 \sin \left (a +b \sqrt {d x +c}\right )-2 \left (a +b \sqrt {d x +c}\right ) \cos \left (a +b \sqrt {d x +c}\right )+2 a \cos \left (a +b \sqrt {d x +c}\right )}{b^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b*(d*x+c)^(1/2)),x)

[Out]

2/d/b^2*(sin(a+b*(d*x+c)^(1/2))-(a+b*(d*x+c)^(1/2))*cos(a+b*(d*x+c)^(1/2))+a*cos(a+b*(d*x+c)^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 62, normalized size = 1.15 \[ -\frac {2 \, {\left ({\left (\sqrt {d x + c} b + a\right )} \cos \left (\sqrt {d x + c} b + a\right ) - a \cos \left (\sqrt {d x + c} b + a\right ) - \sin \left (\sqrt {d x + c} b + a\right )\right )}}{b^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*(d*x+c)^(1/2)),x, algorithm="maxima")

[Out]

-2*((sqrt(d*x + c)*b + a)*cos(sqrt(d*x + c)*b + a) - a*cos(sqrt(d*x + c)*b + a) - sin(sqrt(d*x + c)*b + a))/(b
^2*d)

________________________________________________________________________________________

mupad [B]  time = 4.73, size = 43, normalized size = 0.80 \[ \frac {2\,\left (\sin \left (a+b\,\sqrt {c+d\,x}\right )-b\,\cos \left (a+b\,\sqrt {c+d\,x}\right )\,\sqrt {c+d\,x}\right )}{b^2\,d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a + b*(c + d*x)^(1/2)),x)

[Out]

(2*(sin(a + b*(c + d*x)^(1/2)) - b*cos(a + b*(c + d*x)^(1/2))*(c + d*x)^(1/2)))/(b^2*d)

________________________________________________________________________________________

sympy [A]  time = 0.50, size = 66, normalized size = 1.22 \[ \begin {cases} x \sin {\relax (a )} & \text {for}\: b = 0 \wedge d = 0 \\x \sin {\left (a + b \sqrt {c} \right )} & \text {for}\: d = 0 \\x \sin {\relax (a )} & \text {for}\: b = 0 \\- \frac {2 \sqrt {c + d x} \cos {\left (a + b \sqrt {c + d x} \right )}}{b d} + \frac {2 \sin {\left (a + b \sqrt {c + d x} \right )}}{b^{2} d} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b*(d*x+c)**(1/2)),x)

[Out]

Piecewise((x*sin(a), Eq(b, 0) & Eq(d, 0)), (x*sin(a + b*sqrt(c)), Eq(d, 0)), (x*sin(a), Eq(b, 0)), (-2*sqrt(c
+ d*x)*cos(a + b*sqrt(c + d*x))/(b*d) + 2*sin(a + b*sqrt(c + d*x))/(b**2*d), True))

________________________________________________________________________________________